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Abstract: There are multi-mode information such as randomness and uncertainty in the solar thermal power 

generation set thermal process. In this paper, aiming at this problem, clustering multi-model predictive control 

algorithm is applied to its control. Firstly, the fuzzy clustering is used to measure the data, and then forgetting 

factor recursive the least square method is used to establish the model of the system. Secondly, the measured 

collector entrance temperature and solar radiation is considered as disturbance signal, the collector thermal oil 

flow is used to control outlet temperature and model predictive controller is designed. Finally, the controller 

was applied to the linear Fresnel thermal generation system to make simulation verification, and results were 

compared with the single model predictive control, which show that multi-model control precision was higher. 
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1 Introduction 

The linear Fresnel solar thermal power generation 

system has received wide attention because of its 

simple structure, low cost and good wind 

resistance[1].The control of outlet temperature 

steady changes of collector subsystem of solar 

thermal power generation system is guarantee of 

generating capacity of solar thermal power 

generation system. The solar collector system uses 

the solar radiation to heat the heat conduction oil 

continuously, regulates the flow of heat conduction 

oil, and controls the temperature of the outlet heat 

conduction oil in a certain range, in order to ensure 

the stability of the power generation. 

In recent years, many kinds of intelligent control 

algorithms are applied to the control of solar thermal 

power generation system[2]. The model predictive 

control algorithm is applied in the literature[3-6], 

but the single model predict control(SMPC) is used. 

The control objective of the collection system is that 

the future of the actual output is as close as possible 

to the future expectations of the target output. In the 

literature[7-9], the multi-model of linear Fresnel 

collector subsystem was established, multiple model 

predictive control (MMPC) was used to reduce the 

error of the system tracking setting, and clustering 

multiple model predictive control has been 

successfully applied to the control of system of 

which the stochastic is strong. 

In this paper, based on the above analysis, the 

main research contents include: 
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(1) Collecting 2000 sets of data including the 

outlet temperature, inlet temperature, solar 

radiation and heat conduction oil flow to 

make fuzzy clustering, and DB was selected 

as the evaluation standard of clustering effect. 

The data was divided into five categories. 

(2) Choose export oil temperature as output, the 

other three kinds of data as input. Forgetting 

factor recursive least square method was used 

to establish a multi-variable forecasting 

model; 

(3) The input oil temperature and solar radiation 

was considered as disturbance signal, and heat 

conductive oil flow was considered as control 

variable. Multi-model predictive switching 

controller was designed. 

(4) The MMPC is applied to the actual linear 

Fresnel thermal power generation system, 

which was compared and analyzed with the 

SMPC results. The MMPC control accuracy 

is higher than the single model, and the 

stability of the system control is better. 

 

 

2 Mathematical model of heat 

collection system 

R Carmona, a Spanish scholar, initially used the 

mathematical model [1] to describe the heat change 

of the solar collector [10], and then the model was 

used to analyze the thermal system [4-6]. 
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where, t is time, s；Δx is collector tube section, m；

f  is refrigerant density,kg/m
3； fC is specific heat 

capacity,J/(kg·℃)； fA  is cross section area of pipe, 

m； ( )v t  is conduction heat oil flow，m
3
/s； ( )I t  is 

solar intensity ， W/m
2 ； 0  is mirror optical 

efficiency；
1G is the optical aperture of reflector，m；

nT is conduction heat oil temperature of oil pipeline 

outlet，℃； 1nT   is conduction heat oil temperature 

of oil pipeline outlet, ℃； 

Take Δx=L，then (1) can be  
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Where, L  is the total length of pipeline of the 

collection system, m；
0 ( )T t is the input conduction 

heat oil temperature of collector. The formula (3) 

can be obtained by discretization (2) 

1 2

3 4

( 1) ( ) ( )

( ) ( )

out out inT k AT k A T k

A v k A I k

  

 
        (3) 

Where, outT is outlet temperature, inT  is inlet 

temperature； ( )v k is flow of conduction heat 

oil, ( )I k  is solar radiation intensity, 

1 2 3 4, , ,A A A A  is parameters related to system. 

 
 

3 Clustering modeling of solar 

thermal power generation set 

3.1 Fuzzy clustering of data set 
Collecting the data of linear Fresnel thermal 

power generation system in a region of western 

China which have been put into power generation to 

make fuzzy clustering analysis. Fuzzy clustering 

algorithm is a kind of "soft method" which will 

gather data together. Fuzzy C means clustering 

algorithm is used to determine the membership 

degree of each element to a certain extent, a set of 

data is divided into C fuzzy class to make the fuzzy 

objective function is minimum. 

The measured data are classified by using the 

method of subtractive clustering. The algorithm of 

the forgetting factor least squares identification 

method is used to generate the multi-model, the 

process of the algorithm is as follows[11]: 

 Step1：Determine the number of categories C, 

fuzzy weight index m and the initial clustering 

center v; 

Step2：The fuzzy membership degree iju is 

calculated according to the formula (4). 
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iju is the fuzzy membership degree of category J 

of Individual.
j  is cluster center of category J. 

Step3：Use formula (5) to calculate the 

center of each category. 
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Step4：The target value is calculated according to 

the formula (6) to determine whether the values meet 

the target value or not. If the values meet the target 

value, the clustering is end. Otherwise, return Step2. 
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Clustering validity analysis method has many 

kinds, and this article use Davies Bould n (DB) 

index to carry on the pros and cons of the 

classification. 
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In the formula,  is c  is a measure of the closeness 

of the class and  ,i jd c c represents class distance. A 

typical measurement of closeness of the class and 

class distance is: 

 
1

i
i ix c

i

s c x v
c 

 
             (9) 
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The index and the Dunn index consider the effect 

of clustering from the view of geometric point, and 

the difference is that the DB index takes the average 

similarity of the class into account. The smaller the 

index value, the better the clustering effect. In this 

paper, for 2000 sets of actual power generation data 

M (m1, m2, m3, m4) is classified, among them, m1 is 

the outlet temperature, m2 flow, m3 is the heat 

transfer oil outlet temperature, and the solar 

radiation is m4. Fuzzy clustering was used to 

analyze. When the number of clusters is equal to 5, 

DB is the smallest, and table 1 lists the clustering 

results. 

Table 1 clustering results 

C 3 4 5 6 7 

DB 1.3356 0.7017 0.2123 1.0051 0.7617 

 

 

3.2 Modeling of least squares  
Using the above classification data results 

considered the inlet oil temperature, solar radiation 

and flow rate of conduction heat oil as input, and 

outlet temperature as output. In order to overcome 

the shortcomings of the least squares that its 

correction ability is poor, forgetting factor recursive 

least square method is adopted[12]. The algorithm 

of parameter identification is as follows: 
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Where, ( )k are parameters to be identified, 

( )K k is gain matrix； ( )k is observation matrix；

( )P k is covariance matrix； is forgetting factor. 

According to the measured data and the operating 

characteristics of solar thermal power generation 

collector subsystem, the CAR model (12) is used to 

identify the parameters and the classification results 

of the data are combined to establish five 

mathematical models. 
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initial value, 
5(0) 10P I , forgetting factor 

0.95 . Five mathematical models of the solar 

collector system are shown as(13). 
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Where, ( )iy k  is output oil temperature, 

( )iu k is the flow rate of conduction heat oil, 

( )iniT k  is input oil temperature，and ( )iI k  is 

solar radiation. Formula (13) is considered as 

predictive model of the system. 

 
 

4 Multi-model switching control 

The stability analysis of multi model switching is 

demonstrated and analyzed in the literature [13][14], 

so the model switching system is stable. 

On the basis of multi-model modeling, the model 

is used to switch on line. Fig 1 is the solar collector 

multi-model predictive control system. There are   

sub models 1 2, ,M M M in the picture. Dynamic 

characteristics of the running process is Identified 

based on the input and output data ( , )u y , and output 

is respectively ( 1,2, , )iy i


   . ry is the reference 

input. The output of the model switching strategy 

is (1 )sy s   . The optimal sub model is used to 

cut into the closed loop system for rolling optimal 

predictive control[7][15]. 
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plant
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1M

switching 

strategy

1y


y 



my

y

u

ry



 
Fig 1 Structure block diagram of the solar collector 

multi-model predictive control system 
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represents the output error of the actual output and 

the (1 5)i i  sub model. Switching index is: 
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The switching condition is that the performance 

index of the formula (14) is the smallest. The 

smaller iJ , the smaller the model iM mismatch. 

0, 0a b   are respectively the weighted 

coefficients of the mismatch errors for the present 

moment and the past l moment. Forgetting factor is 

0 1  , which presents the forgetting degree of 

the mismatch error in the system performance 

index for the past l moments. l  is the time domain 

length of the past time. 

4.1 Predictive controller 

Consider the following nonlinear 

discrete systems[16][17]. 
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Where,  ku  and  ky  are respectively input 

and output of system, m  and  n  represent the 

order of the input and output respectively,  f  is 

an unknown nonlinear function, and meet the 

conditions: 

1)  0, 0, , 0 0f  ; 

2)  f  is continuous derivative about 

       , , 1 , , , 1y k y k n u k u k m     , and the 

partial derivative is bounded. 
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Theorem: The nonlinear system (16) which 

meets the condition 1) and 2) can be approximated 
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as follows: 
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Where, ( )y k and ( )u k are output for the system, 

control increment ( )k is total disturbance signal of 

system, d is delay time. 
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System prediction output can be represented 

by (19). 
*
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The vector in formula (19) can be 

represented by the following formula. 
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Where, 
mY  is the past output for the system, *

Y  

is predictive output, and G is the control matrix. 

In the formula (21), 
m ( )y k j  is determinate by 

past input and output and expressed by (25). 
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The parameters in the formula (24) can be 

calculated by (26). 
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Where, 
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( )k is the expected output of k moment,  is 

diffusion coefficient, and 
rY is reference trajectory 

vector. Make the objective function (28) the 

minimum, the optimal control increment (28) can 

be obtained. 
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The control variable can be represented by 

formula (30). 
1
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Γ  is the control weight matrix and unit matrix. 

 

 

5 Simulation result analysis 

Solar thermal power generation system used 

formula (3) to simulated. Control variable is the 

flow of conduction heat oil, and input temperature 

and solar radiation is the measured disturbance 

signal. According to the disturbance signal to 

control the size of oil flow, and the outlet 

temperature follow a predetermined target. Took 

The parameters of the linear Fresnel power 

generation demonstration project in the west of 

china to make simulation analysis. Flow range of 

conduction heat oil is 3l/s ～ 12l/s. 
3 0

0,800kg/m 0.60, 2600 / ,f fC J kg C      T=20

s, L=220m,Af =0.65m
2
, 0.80G m . Single model 

and multi-model are used to make predictive 

control respectively. 0.7  ， =0.35, the length 

of control took 1, and control weighting coefficient 

took 0.9. Simulation results of two algorithms are 

shown in Fig 2 to Fig 7. Fig 2 and Fig 3 are the 

actually measured solar radiation intensity and 

input oil temperature. Fig 4 and Fig 5 are the 

results of the model predictive control and the 

tracking error. Fig 6 is the process for multi-model 

switching. Fig 8 and Fig 7 are the results of 

multi-model switching control and tracking error. 
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Fig 2 Solar radiation intensity 
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Fig 3 Input oil temperature 
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Fig 4 Results of single model predictive control 
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Fig 5 Output oil temperature error of single model 

predictive control 
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Fig 6 Model selection in control process  
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Fig 7 Results of multi-model predictive control 
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Fig 8 Output oil temperature error of multi-model 

predictive control 

From Fig 5 and Fig 8, it can be seen that the error 

of multi model control is smaller and the stability of 

control is better. MSE was calculated through 

SMPC 1.66886189, and the MSE of multi-model 

control was 0.65030726. 

 

 

6 conclusion 
In this paper, we collect the data of 2000 sets of 

solar thermal power generation collect subsystem, 

classify them, and set up its mathematical model. 

Predictive controller was designed to make 

multi-model switching control. The single model 

and multiple model were applied to the linear 

Fresnel solar thermal power generation system in 

Gansu province which has been put into use to make 

simulation analysis. From Fig 3 and Fig 6, it can be 

seen that the multi-model switching control 

precision is higher, and the time lag is shorter. 

Compared with the single model predictive control, 

the mean square error of the multi- model is smaller. 

The results show that the tracking error is reduced 

and the convergence speed and tracking accuracy of 
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the system are improved by using the multi model 

predictive control strategy. 
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